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DynamicRelationbetween Reduced,Oxidized,and Protein-BoundHomocysteine
and Other Thiol Componentsin PlasmaduringMethionineLoadingin Healthy Men
M. Azam Mansoor, Asbj#{248}rnM. Svardal, Jrn Schneede, and Per Magne Ueland

We used a newly developed procedure to determine
reduced, oxidized, and protein-bound forms of homocys-
teine, cysteine, cysteinyiglycine, and glutathione to mea-
sure the plasma concentrations of these species during
methionine loading in six young healthy men with normal
fasting concentrations of plasma homocysteine and cys-
teine. The methionine loading induced a transient in-
crease in total homocysteine, which peaked after --6-8 h.
All six subjects showed a concurrent significant increase
in reduced homocysteine and cysteine, which peaked 2 h
after loading, and a rapid decrease in protein-bound
cysteine and cysteinyiglycine. The concentration of re-
duced cysteinyiglycine was not altered. Plots of protein-
bound cysteine and cysteinyiglycine vs total homocys-
teine formed hysteretic loops, showing a time-dependent
relation between these analytes. After the initial decrease,
protein-bound cysteine and cysteinylglycine showed a
slight, transient increase. From 12 to 24 h after loading,
protein-bound cysteine approached preloading concen-
trations in two subjects and declined further in four
subjects. The response pattern was similar for cysteine
and cysteinyiglycinein each subject. Simple displacement
could not account for these effects, which suggests that
plasma homocysteine may affect the disposition of other
thiols through complex mechanisms. The presence of
reduced homocysteine and the dynamic relation that
exists between homocysteine, cysteine, and related com-
pounds in plasma should be taken into account when
evaluating plasma homocysteine as an indicatoror caus-
ative agent of human disease.
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aminoacids

Homocysteine is a sulfur-containing amino acid
formed from methionine during transmethylation. Once
formed, homocysteine is either salvaged to methionine

by remethylation or is condensed with serine to form
cystathionine, which is further catabolized to cysteine.
Remethylation of homocysteine to methionine is cata-
lyzed either by 5-methyltetrahydrofolate-homocysteine
methyltransferase (methiomne synthase, EC 2.1.1.13)
or betaine-homocysteine methyltransferase (EC
2.1.1.5). The former enzyme is widely distributed and
requires 5-methyltetrahydrofolate as methyl donor and
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methylcobalamin as a cofactor. Betaine-homocysteine
methyltransferase is confined to the liver, with only
minor activity occasionally found in the kidneys and
adrenal glands. The catabolic pathway is catalyzed by
the sequential action of two vitamin B6-dependent en-
zymes, cystathionine f3-synthase (EC 4.2.1.22) and cys-
tathionine y-lyase (EC 4.4.1.1) (1).

Intracellular homocysteine probably occurs in the
reduced form and is kept at a low concentration. Sub-
stantial amounts of homocysteine also exist in extracel-
lular fluids, e.g., plasma and urine. Under conditions of
increased homocysteine production or inhibition of ho-
mocysteine metabolism, homocysteine is exported into
the extracellular compartment, so that the extracellular
concentrations increase markedly. In the extracellular
fluids, the major portion is analyzed as oxidized home-
cysteine. In human plasma, -30% is determined as free,
acid-soluble cysteine-homocysteine mixed disulfide,
whereas the major portion (70%) forms a protein-bound
mixed disulfide with albumin. Rapid protein binding
and oxidation of homocysteine in blood in vitro may
obscure assessment of the species prevailing in vivo (2).

Patients with inborn errors of remethylation or catab-
olism of homocysteine, collectively termed homocystin-
uria, have a marked increase in concentrations of
plasma and urinary homocysteine. Patients with cys-
tathionine $-synthase deficiency, the most common
form of homocystinuria, have vascular disease in child-
hood and early adolescence (3).

Increases in plasma homocysteine have also been
demonstrated in acquired conditions, e.g., deficiencies of
such cofactors as folate, cobalamin, or vitamin B6. Also,
individuals who are heterozygous for cystathionine
-synthaae deficiency have plasma homocysteine con-
centrations above normal; other heterozygous states
involving homocysteine metabolism may predispose to
hyperhomocysteinemia (2). This is particularly impor-
tant because moderate hyperhomocysteinemia seems to
be an independent risk factor for premature vascular
disease and may therefore by of major concern to the
public health (4).

The methionine loading test was first described by
Brenton et al. (5) as a diagnostic procedure to detect
homocystinuria due to cystathionine $-synthase defi-
ciency; it has since been found useful for identifying
heterozygotes among patients with premature vascular
disease (6-13). This test involves the oral adminigtra-
tion of methionine, which induces a transient increase
in both free and protein-bound homocysteine in plasma,
peaking between 4 and 8 h after loading in normal
subjects (14, 15).

The rapidly changing concentrations of homocysteine
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Table 1. FastIng Concentrations of ThIol Components and Methlonlne In Plasma (1imol/L)
Subl.ct Total homocyatein. Total cystsln. Total cyatelnyiglycln. Total glutathione Methionlne

1 12.4 244.6 27.9 5.4 23.3
2 12.0 252.5 30.8 9.0 28.5
3 10.4 237.1 40.1 8.1 51.4
4 9.9 222.7 26.2 4.4 17.7
5 11.4 257.9 27.0 6.2 31.0
6 7.35 221.0 32.3 5.5 41.3

Table 2. Methlonlne In Plasma (pmoIIL) after Methlonlne Loading

Sub$.ct

Tim.altar Io.dlng, h

0 2 4 6 8 12 24

1 23.3 512.1 466.3 444.7 426.5 388.7 155.8
2 28.5 499.1 445.1 405.2 357.0 231.1 31.9
3 51.4 441.6 363.8 259.7 178.2 85.5 43.0
4 17.7 618.4 472.8 374.3 309.7 219.6 41.6
5 31.0 662.5 553.7 520.3 475.8 400.0 127.3
6 41.3 769.3 658.5 578.2 476.5 395.6 97.6

in plasma after methionine loading may allow investi-
gation of the possible relations between various forms of
homocysteine and other thiols in plasma from healthy
subjects in vivo. This can be accomplished by a proce-
dure we developed (16) for determining reduced, oxi-
dized, and protein-bound homocysteine, cysteine, cystei-
nylglycine, and glutathione (GSH), in which whole
blood is collected directly into tubes containing thiol-
specific reagents.

MaterIals and Methods
Materials and Subjects

N-Ethylmaleimide (NEM), N-ethylmorpholine, di-
thioerythritol, GSH, glutathione disulfide (GSSG), ho-
mocysteine, and cysteine were obtained from Sigma
Chemical Co. (St. Louis, MO); oxidized cysteinylglycine
was from Serva Chemicals (Heidelberg, FRG). NaBH4
was from Fluka Chemie AG (Buchs, Switzerland). Di-
methyl sulfoxide, hydrogen bromide, 5-sulfosalicylic
acid (dihydrate), perchloric acid, acetic acid, phosphoric
acid, and methanol (for chromatography) were pur-
chased from Merck AG (Darmstadt, FRG); monobromo-
bimane (mBrB) was from Molecular Probes, Inc. (Eu-
gene, OR). Tetrabutylammonium hydroxide was ob-
tained from Aldrich Chemie (Steinheim, FRG). ODS
Hypersil (3-cm particles) chromatographic packing was
obtained from Shandon Southern Ltd. (Cheshire, UK).
Columns for reversed-phase liquid chromatography
(3-tim Hypersil; 150 x 4.6 mm) were slurry packed at
62.1 MPa with a Shandon column packer.

Six healthy male volunteers participated in the study;
their mean age was 31.5 years (range 24-35 years). All
had plasma homocysteine and plasma cysteine concen-
trations (Table 1) within the normal range, i.e., within 2
SD of the mean of a healthy population (5.5-15 anol/L
for total homocysteine and 200-300 moI/L for total
cysteine). All had a normal methionine profile, which
approached preloading concentrations within 24 h after
loading (Table 2).

Procedures
Methionine loading, blood sampling, and processing.

The methionine-loading test was performed by oral

administration of methionine (100 mg/kg of body wt.) in
-200 mL of orange juice after an overnight fasting.

Blood samples were collected immediately before the
methionine intake and 2, 4, 6, 8, 12, and 24 h after-
wards.

Blood was routinely collected into three evacuated
tubes containing either mBrB or NEM as thiol-deriva-
tizing reagent or no additions. The blood was centri-
fuged without delay at 10 000 x g for 1 mm at room
temperature to remove the formed elements of blood.

Determination of reduced, axidized, and protein-
bound thiol components in plasma. Thiols in blood react
with mBrB to form fluorescent adducts. The blood cells
are removed by centrifugation, the plasma proteins by
acid precipitation. Chromatographic analysis of the ac-
id-soluble supernatant gives results for the free, reduced
forms of homocysteine, cysteine, cysteinylglycine, and
GSH.

In blood collected into a solution containing NEM, the
reduced sulfhydryl groups are rapidly trapped as their
NEM adducts. The plasma fraction is then deproteinized
with acid, and the disulfides are reduced in the presence
of NaBH4 to their corresponding thiols, which are then
derivatized with mBrB. This is the procedure for deter-
mining the oxidized, free forms of homocysteine, cys-
teine, cysteinylglycine, and GSH.

Proteins in a sample from untreated plasma were
precipitated with sulfosalicylic acid and dissolved in a
solution containing NaBH4 and NaOH. The free thiols
formed from reduction of protein-bound mixed disulfides
by NaBH4 were derivatized with mBrB for determina-
tion of the protein-bound species.

The total amounts of homocysteine, cysteine, cystei-
nylglycine, and GSH in plasma were determined accord-
ing to a modification (16) of a procedure described
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Resufteare given as mean (SD)

previously (17), which involved reduction of disulfides in
whole plasma with NaBH4 and derivatization of the free
thiols with mBrB. The thiol-mBrB adducts are sepa-
rated by ion-paired liquid chromatography on an ODS-
Hypersil column. Details on the set up and performance
of these assays are described elsewhere (16).

Met hio nine in plasma. Methionine was determined in
deproteinized plasma by an assay based on derivatiza-
tion with o-phthaldialdehyde and fluorescence detection
(18).

Statistical analysis. Data obtained for a particular
analyte over a 24-h period were analyzed by the Fried-
man test (nonparametric analysis of variance). In cases
where significant (P <0.05) changes were obtained, the
values before loading were compared with the values at
2 h after loading, by use of the Wilcoxon matched-pair
signed-range test. All P-values are given as two tailed.

Results

Various forms of homocysteine in plasma during me-
thionine loading. The homocysteine response alter me-
thionine loading is shown in Figure l#{192}.Free oxidized
and protein-bound homocysteine in plasma increase,
showing a peak 6 h alter methionine intake, as has been
previously demonstrated (14, 19,20).

The mean concentration of reduced homocysteine in
these individuals before loading was 0.07 (SD 0.02)
imol/L. There was a significant change (P <0.001,
Friedman test) and a significant (P <0.05) increase to
0.24 (SD 0.14) zmo1/L within 2 h. At that time, large
variations in reduced homocysteine were observed
(range 0.1 to 0.46 mol/L; Table 3), after which the
concentration of reduced homocysteine declined (Figure
1A).

Various forms of cysteine, cysteinylglycine, and glu-
tathione. Protein-bound cysteine (Figure IB) and cystei-
nyiglycine (Figure 1C) showed significant (P <0.025
and <0.001, respectively) changes after loading; concen-
trations of both analytes decreased (P <0.05) within 2 h

Table 3. Plasma ConcentratIons (1zmol/L)of Reduced
Homocystelne and Cystelne before and 2 H after

Methlonlne LoadIng
Befors loading (fastIng) 2 h altar loading

Sub4.cts Homocystelne Cystsln. Homocystsln. Cyatsin.
1 0.05 2.9 0.10 4.1
2 0.05 3.2 0.46 10.9
3 0.08 12.2 0.17 17.5
4 0.03 4.1 0.21 6.4
5 0.09 3.7 0.34 9.8
6 0.09 3.9 0.14 4.4

Mean(SD) 0.07 (0.02) 5.0(3.6) 0.24 (0.14) 8.8 (5.0)

of methionine intake. The rate and extent of normaliza-
tion of protein-bound cysteine varied from individual to
individual, but approached preloading concentrations in
two (subjects 2 and 6) of six subjects 24 h after methio-
nine administration (Figure 2).

Free oxidized cysteine showed no significant change
after loading. Changes in the concentration of free
oxidized cysteinylglycine could be demonstrated (P
<0.001, Friedman test), but there was no significant
increase after 2 h (Figure 1).

Reduced cysteine (mean, 5.0 mo1fL) and reduced
cysteinylglycine (mean, 2.1 anolJL) were also detected
in plasma. Cysteine was significantly (P <0.05) in-
creased (to 8.8 moIJL) 2 h after loading (Table 3),
whereas the concentration of cysteinylglycine was un-
changed (Figure 1).

The various species (reduced, oxidized, protein-bound,
and total) of GSH remained stable after methionine
loading. Total GSH varied within the range 4.4-9
zmo1JL (data not shown).

Relation between homocysteine and protein-bound cys-
teine and cysteinyiglycine. We plotted the sum of total
homocysteine, cysteine, and cysteinylglycine (total thiol
components, i.e., the reduced plus oxidized plus protein-
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Fig. 2. Relation between the transient hyperhomocysteinemiainduced by methionine loadingand the protein bindingof cysteine and
cystelnylglycine In the individualsubjects
The data points are connected by lines according to increasingtimeafter loading. The point marked“0” indicates the value before loadingand 24” indicates the
value 24 h after methionineintake. From left to right; panels represent results for sublects 1-6, respectIvely.

bound thiol moieties) and the sum of protein-bound
homocysteine, cysteine, and cysteinyiglycine vs time
after methionine loading (data not shown). There was a
trend towards a decrease in the sum of total thiol
components, but this decrease was not significant. In
contrast, significant changes in the sum of protein-
bound thiol compounds were observed after methionine
loading (P <0.05, Friedman test), and the values de-
creased (P <0.05)2 h after loading.

The changes in protein-bound cysteine and cysteinyl-
glycine after methionine loading were plotted against
total homocysteine. A time-dependent relation between
protein-binding and total homocysteine in plasma was
observed, and hysteretic loops or curves were obtained
(Figure 2). The curves for cysteine and cysteinylglycine
showed a similar pattern (Figure 2), consistent with a
parallel alteration in protein-binding of these two com-
pounds. All subjects showed a rapid decline in protein-
bound cysteine within 2 h; after this time, a transient
increase was observed (Figure 2). Next, the response
was characterized by a clockwise or counterclockwise
loop, followed by either a further decrease in protein
binding (for subjects 1, 3, 4, and 5) or a partial increase
to values approaching the preload binding (subjects 2
and 6).

DIscussIon
Evaluationof the Method

This study is based on recently developed procedures
for the determination of reduced, oxidized, protein-
bound, and total concentrations of homocysteine, cys-
teine, cysteinylglycine, and GSH in human plasma. The
technique for determining the reduced and oxidized
species is based on collecting whole blood directly into
tubes containing rapidly reacting thiol-specific reagents
(e.g., mBrB or NEM) (16). The oxidized forms are
detected after the free thiol groups are blocked with
NEM, followed by reduction of disulfides with NaBH4,

and finally derivatization of free thiols with mBrB. The
sequential combination of these reagents allows the
separate determination of all these sulfur compounds in
plasma. The assay is characterized by a CV <8% and
the total amount of each compound assayed directly fits
with the sum of the separate species (16).

Reduced Homocysteine and Other Thiols in Plasma

There is one previous report on the presence of trace
amounts of reduced homocysteine in human plasma
(21), but the technique used did not quantify the re-
duced form because of the low reactivity (22) to thiols of
the derivatization reagent used. By collecting blood
directly into tubes containing mBrB, we could demon-
strate reduced homocysteine at a concentration of 0.06
iino11L in plasma from healthy fasting men (Table 3);
this accounts for -1% of total homocysteine. The
amount is drastically increased after methionine in-
take. Furthermore, the response is rapid, reaching max-
imal concentration after 2 h, and precedes the increase
in oxidized and protein-bound species, which peak after
6 h (Figure 1A). Finally, the increase in reduced home-
cysteine in plasma shows marked interindivid.ual differ-
ences (range 0.1 to 0.46 pinol/L after 2 h; Table 3).

These observations show that the increase of reduced
homocysteine is a component of the metabolic response
to methionine intake, which does not merely mirror the
transient increase of the disulfide forms. Therefore, the
concentration of reduced homocysteine and the changed
concentration after methionine loading should be inves-
tigated in patients with diseases characterized by in-
creased concentrations of fasting or postload homocys-
teine, including homocystinuria, folate and cobalamin
deficiencies, and premature vascular disease. In fact,
modification of low-density lipoproteins by reduced ho-
mocysteine and the potential role of this modification in
atherogenesis are suggested by experimental findings
(23,24) and may motivate such investigations.
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We detected and measured reduced cysteine, cystei-
nylglycine (Figure 1, B and C), and GSH in human
plasma. The presence of reduced cysteine in plasma was

demonstrated by Brigham et al. (25) 30 years ago, and
our finding of reduced GSH confirms recent observations
from several laboratories (17). Reduced GSH represents
a significant fraction of total glutathione (-60%),
whereas the reduced form is only a minor fraction of
total cysteine (-5%) or cysteinylglycine (-10%) (16).
Whether this reflects different rates of formation or of
removal (oxidation) of the reduced species remains to be
determined.

The increase in reduced cysteine shortly after methi-
omne intake (Figure lB and Table 3) is another original
observation of potential interest, especially because this
thiol also oxidizes low-density lipoproteins, at least in
vitro (23,24).

Reduced cysteinylglycine was not significantly in-
creased after methiomne loading (Figure 1C). The se-
lective increase in reduced cysteine may be explained by
the fact that the metabolic relation between methionine
and homocysteine vs cysteinyiglycine is remote,
whereas homocysteine is an immediate precursor of
cysteine via the transsulfuration pathway (1). There-
fore, methionine loading may enhance cysteinylglycine
turnover to a lesser degree than it does the turnover of
cysteine. The increased amount of reduced cysteine in
plasma may reflect high turnover of this thiol during
methionine loading.

Protein Binding

More than 50% of homocysteine, cysteine, and cystei-
nylglycine in the plasma of the healthy subjects inves-
tigated was protein-bound (Figure 1) (16). This agrees
with values for protein binding previously reported for
homocysteine (2,26) and cysteine (26-28).

Both experimental (29, 30) and clinical studies (26)
demonstrate the presence in plasma of binding sites for
aminothiols, which preferentially interact with home-
cysteine. Binding of homocysteine seems to be satura-
ble, the maximal binding capacity being -140 pinol/L
(26).

Methionine loading induces a transient hyperhomo-
cysteinemia, which in all subjects is associated with a
transient reduction in protein-bound cysteine and cys-
t.einylglycine (Figure 2). This is not merely the replace-
ment of these species with equivalent amounts of pro-
tein-bound homocysteine, because the sum of protein-
bound cysteine, cysteinylglycine, and homocysteine is
decreased (data not shown). The complex nature of this
phenomenon is further indicated by the fact that a
maximal decrease in protein-bound cysteine and cystei-
nylglycine in some subjects (1, 3, 4, 5) occurs at a time
when the concentration of plasma homocysteine is to-
tally or partially normalized (Figure 2).

Conceivably, several processes contribute to the hys-
teretic response depicted in Figure 2. One may speculate
whether the rapid decrease in bound cysteine to -120
Mmol/L within 2 h after loading (Figure 2) represents
displacement from a homogeneous population of binding

sites that have high affinity for homocysteine. The
transient increase in bound cysteine (and cysteinylgly-
cine) that follows may represent displacement from
acceptor(s) in extravasal compartments.

Our data suggest that the plasma concentration and
the protein binding of aminothiols are mutually regu-
lated. Such regulation may either provide optimal
amounts of these compounds for vital cellular function
or protect cells against high, toxic concentrations of
thiols and disulfides (31). The interrelation between
aminothiols may also have implications for the use of
plasma homocysteine in laboratory diagnosis. In line
with this idea, we found that the concentration of serum
folate in patients with rheumatoid arthritis was more
strongly correlated to the ratio between homocysteine
and cysteine than to the concentration of plasma home-
cysteine (32).
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